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In this paper we formalize the small-world effect which describes the surprising fact that a hybrid graph
composed of a local graph component and a very sparse random graph has a diameter of O�ln n� whereby the
diameter of both components alone is much higher. We show that a large family of these hybrid graphs shows
this effect and that this generalized family also includes classic small-world models proposed by various
authors although not all of them are captured by the small-world definition given by Watts and Strogatz.
Furthermore, we give a detailed upper bound of the hybrid’s graph diameter for different choices of the
expected number of random edges by applying a new kind of proof pattern that is applicable to a large number
of hybrid graphs. The focus in this paper is on presenting a flexible family of hybrid graphs showing the
small-world effect that can be tuned closely to real-world systems.
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I. INTRODUCTION

The small-worldness of social networks has long been a
part of folklore until Milgram took the first steps to examine
it more closely in 1967 �1�. The small-world property de-
scribes the fact that people are tightly knit into small social
clusters while on the other hand just a short chain of acquain-
tances is needed to connect almost any two humans in the
world. Milgram estimated the number of persons in such a
chain to be around six �1� which is why this observation is
also known under the title six degrees of separation. The first
formal approach to explain this astonishing result was made
by Watts and Strogatz in a seminal paper �2� in which they
gave a first definition of small-world networks and presented
a model for their generation. They defined a small-world to
be every network that is on the one hand very regular, in the
sense of locally densely connected, and on the other hand
random enough to show a low diameter.

Following their presentation, several real-world networks
such as the WWW or file-sharing communities were ana-
lyzed and shown to be small-worlds �e.g., Refs. �3–6��. A
second research area deals with network-based processes on
small-world networks, like the behavior of neural networks
on small-worlds �7� or disease spreading in small-worlds �8�.
Other directions of research tried to find more rigorous ana-
lytical results on the properties of either the classic small-
world model or on variants of the small-world model that
were easier to analyze or captured new aspects of small-
worlds �9–15�. All of these models are either built by starting
from a regular network where a very small proportion of the
edges is randomly rewired �9,10�, or they are composed of a
regular network and a very sparse random graph �11–15�.
The latter type of model we will call a hybrid graph of a
nonrandom and a random graph component.

In this paper we want to concentrate on the small-world
effect, which we define as the substantial decrease of the

diameter by building the hybrid graph out of two graph com-
ponents where each of the components alone has a much
higher diameter than the hybrid graph. The formal definition
is given in Definition 1. The connection between the terms
small-world and small-world effect is as follows: Watts and
Strogatz defined a graph to be a small-world if it shows a
high clustering coefficient and a low diameter of O�ln n�.
The clustering coefficient equals the number of neighbors of
a vertex that are connected in relation to the maximal num-
ber of connected neighbors. This measure is in most cases a
good indicator of localness and regularity: It is for example
known that distributing n vertices in a 2d space uniformly at
random and connecting each vertex with its k next neighbors
will result in a clustering coefficient of around 0.58 �20�. But
not every graph that is regular and in which vertices are
connected that are near to each other has a high clustering
coefficient, e.g., all orthogonal lattices have a clustering co-
efficient of 0. In the strict sense, all small-world models
based on regular lattices are not included in the set of small-
worlds, e.g., Refs. �11,12�. Also some real-world networks
are not classified as a small-world in that strict sense, e.g.,
data on heterosexual relationship networks that have by defi-
nition a clustering coefficient of 0 because they are bipartite
�21�. Of course, all these models and data are nonetheless
named and recognized as small-worlds and small-world
models, respectively. The small-world effect is now defined
for graph models and not so much for single graphs, and
includes by definition all classic small-world models because
it does not require a high clustering coefficient. We want to
note that there might be graph models that would be classi-
fied as a small-world in the strict sense of Watts and Strogatz
but do not show the small-world effect. As an example, let a
graph be composed of a balanced binary tree and of a second
graph, where any two leaves of the tree are connnected with
each other if they are connected to the same vertex. Since
there are n /2 leaves in the tree and every leaf has a cluster-
ing coefficient of 1 due to the additional connection, the
whole graph has a clustering coefficient greater than 0.5 but
the graph does not show the small-world effect because the
balanced tree alone has a small diameter of O�ln n�. In our
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intuition, graph models with this property would not be ac-
knowledged as small-world models and to our knowledge
there is no such small-world model.

We state that for all the models that have been acknowl-
edged as small-world models so far, the small-world effect is
a generalizing concept that unifies the existing small-world
models.

In the following we will restrict ourselves to those hybrid
graphs where one component is a random graph G�n , p�, in
which every edge exists with the same probability p. We
show in this paper, that the small-world effect can be found
in a large family of hybrid graphs with different graph fami-
lies building the nonrandom graph component. We introduce
a new characteristic for graph families, namely the regular
decomposability and prove that it is sufficient for any hybrid
graph to show the small-world effect if the nonrandom graph
family has this property. We also give strong upper bounds
on the diameter of the hybrid graph in dependence of p and
the structure of the nonrandom graph component.

The paper is organized as follows: In Sec. II we give
some basic definitions needed in the concourse of the paper.
Section III is structured into three sections: Sec. III A intro-
duces the main model, Sec. III B gives the upper bound of
the diameter for this model, and in Sec. III C we generalize
the analysis to any combination of regularly decomposable
graph families with G�n , p�. In Sec. IV we discuss the rela-
tionship between locally clustered and regularly decompos-
able graphs on the example of k-next neighborhood graphs.
Section V concludes with a summary and discussion of the
results.

II. DEFINITIONS

A graph family G�n� denotes any set of graphs generated
by the same algorithm and parametrized by the number n of
vertices in it. For nonrandom graph families and a fixed set
of parameters only one specific graph is generated. For graph
families generated partly by probabilistic processes, G�n� is
defined as the set of all possible realizations. Statements
about G�n� are then interpreted as statements about expected
characteristics of this set. We will use the notation G�n� in-
terchangeably for the whole set or a specific realization of
this set.

A regular d-dimensional, equilateral grid �hypercubical
lattice� Gd�n� is defined as a set of vertices placed on integer
positions in d dimensions. a�N denotes the number of
vertices placed in each of the d dimensions. The number
of vertices in this grid is then given by n=ad, where every
possible position—identified by a d-dimensional vector
�1�b1�a ,1�b2�a , . . . ,1�bd�a�—is occupied with one
vertex. The degree deg�v� of a vertex is defined as the num-
ber of incident edges and equals the number of direct neigh-
bors of v. Every vertex v is connected by an edge to those
vertices that differ in their position by exactly one in exactly
one dimension from the position of v, i.e., every vertex has
at most degree 2d. For these grids, the graph theoretic dis-
tance d�v ,w� of any two vertices v ,w, i.e., the minimal num-
ber of traversed edges to walk from v to w, coincides with

the Manhattan distance dM�v ,w� of these vertices which is
defined by

dM�v,w� = �
1�i�d

�bi�v� − bi�w�� . �1�

The diameter D�G� of any graph G is defined as the maximal
distance of any two vertices within the graph. The diameter
D(Gd�n�) is given by the maximal Manhattan distance of any
two vertices in Gd�n� and can be calculated by

D„Gd�n�… = �
1�i�d

a − 1 = d�a − 1� . �2�

A graph is connected if there is a way from every vertex v to
any other vertex w.

The clustering coefficient C�v� of a vertex v is defined as
the ratio of the number of edges e�v� between direct neigh-
bors of v and the maximal possible number of edges between
direct neighbors �2�:

C�v� =
e�v�

deg�v��deg�v� − 1�
. �3�

A G�n , p� random graph is defined as an instance of all pos-
sible graphs with n vertices where every of the � n

2
� edges

exists with probability p �16�.
A graph G or a graph family G�n� is clustered if �for

every n� there is a partitioning such that the fraction of real-
ized edges within the subgraphs given by the partition is
much higher than the fraction of realized edges between the
subgraphs, i.e., the subgraphs are locally dense and globally
sparse. This definition is quite broad because there are many
different measurements that try to quantify how good such a
clustering is, e.g., coverage, intracluster and intercluster con-
ductance �for an overview see Ref. �17��, or modularity �18�,
to name but a few. Here, we just want to concentrate on the
locally dense vs globally sparse part of that definition that is
the intuive basis for most of these measures. A graph or a
graph family G�n� is locally clustered if �for every n� verti-
ces have a position in a d-dimensional space and at least one
partition exists that divides the space into subspaces such
that the subgraphs within these subspaces are locally dense
and the graph is globally sparse. If a graph is only given by
its adjacency matrix and the vertices have no position in
space, the graph can be said to be potentially locally clus-
tered if a distribution of the vertices in a d-dimensional space
can be found such that the graph is locally clustered. Note
that all classic small-world models are based on locally clus-
tered graph families like chordal rings in which every vertex
is placed on a ring and is connected to its k-next neighbors
on each side �2,15� or d-dimensional lattices �11–14�.

We will use the following theorem on the diameter of
random graphs G�n , p� �19�:

Theorem 1: If pn / ln n→� and ln n / ln�np�→� then
D(G�n , p�) is asymptotically equal to ln n / ln�np� with high
probability.
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Note that this theorem implicitly includes that the random
graph is connected with high probability. To simplify the
following proofs we will use a stricter version of the theorem
and require additionally that p� �ln n�1+� /n, where ��0,
�R.

III. A FRAMEWORK FOR HYBRID GRAPHS WITH A
SMALL-WORLD EFFECT

The following definition of the small-world effect de-
scribes the decrease of the diameter by combining two graph
components that have a much higher diameter as single com-
ponents.

Definition 1: A hybrid graph family is defined as any com-
bination GLR�n� of a clustered graph family GL�n� and a
random graph family GR�n�. GLR�n� shows the small-world
effect if the diameter D(GLR�n�) is at most scaling polyloga-
rithmically and if the following relations hold for n→�:

D„GL�n�…
D„GLR�n�…

→ � and
D„GR�n�…
D„GLR�n�…

→ � . �4�

We will now present a rather general proof pattern with
which the upper bound on the diameter of certain hybrid
graphs can be given. The number of required properties of
these hybrid graphs is very small and thus a large family of
hybrid graphs falls into this category of graph families with a
small-world effect. For didactic purposes we start with a very
simple model that will be generalized later to a large family
hybrid graphs that fall into the above given definition.

A. A first starting point

We start with a simple hybrid graph composed of a ran-
dom graph G�n , p� and a regular d-dimensional grid in the
following way: The basic regular graph is the d-dimensional
grid of n vertices, where each vertex is connected to its 2d
next neighbors, combined with a G�n , p� random graph on
the same n vertices. We will denote by Gd�n , p� a graph from
our model, which is given by the combination of a Gd�n�
regular grid and a random graph G�n , p�.

The remaining part of this section gives an answer to the
following question: How does the diameter of regular net-
works combined with a small set of random edges scale?

Since the basic network is a d-dimensional grid, the di-
ameter of this component without any added random edges
will scale with a−1 for a fixed dimension d: D(Gd�n�)=d
�a−1�. If the added random graph has a probability greater
than or equal to �ln p�1+� /n then the combined graph will
have a diameter that is dominated by the diameter of the
random graph and thus is asymptotical to at most ln n / ln�np�
�Theorem 1�. Thus, a hybrid graph with a dense random
graph component does not show the small-world effect.

In the following we will show what happens in the regime
where p lies below �ln p�1+� /n and describe the regime in
which the diameter of the hybrid graph will scale at most
�poly-� logarithmically.

B. The diameter of Gd„n ,p… graphs

For the above given model of a graph Gd�n , p� the follow-
ing lemma holds.

Lemma 1: For p=1/cn, c�R+ the diameter of Gd�n , p� is
asymptotically bounded by at most

d���d c�ln n�1+�� − 1�� ln n

�1 + ��ln ln n − ln 2
+ 1	 . �5�

The proof proceeds in four steps:
�1� To prove the lemma we partition Gd�n , p� into nS con-

nected d-dimensional equilateral subgraphs Si, 1� i�nS
with a side length l such that each subgraph contains at least
s= ld�c�ln n�1+� vertices �Fig. 1�.

�2� For any a, we can only build �a / l� full subgraphs per
dimension. n* denotes the number of all vertices contained in
a full subgraph. We will show that the n−n* vertices that are
not contained in any full subgraph build a vanishing fraction
of all vertices for n→�. We will thus base our proof on a
reduced regular d-dimensional grid of size n* that contains
only the full subgraphs.

�3� We construct a supergraph GS�nS�= �S ,E�� where
each vertex vi�S uniquely represents the subgraph Si for

FIG. 1. Valid partitions for a two-dimensional grid with side
length a. Full equilateral subgraphs with side length l may be
placed arbitrarily as long as their number is maximal. Therefore
numerous partitions exist and for each pair of vertices numerous
partitions can be found where both are contained in full subgraphs.
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1� i�nS. Edge e= �vi ,v j� is member of E� if there is at least
one random edge from any vertex in Si to any vertex in Sj.
We will prove that Theorem 1 can be applied to GS�nS�.

�4� Then we will expand GS�nS� to gain a bound on the
diameter of the original but reduced graph Gd�n* , p�. The
diameter of Gd�n* , p� is bounded by the product of the diam-
eter of the subgraphs D�Si� and the diameter D�GS�. We will
show that there are numerous partitions of Gd�n , p� into nS

subgraphs. Especially, for any pair of vertices v ,w there is at
least one partition of Gd�n� such that both, v and w, are
contained in full subgraphs. Since every supergraph based on
a possible partition obeys Theorem 1, we will therefore have
shown that the whole graph Gd�n , p� obeys Lemma 1 and the
case is proven.

We will start by partitioning a Gd�n , p� graph. Let Si,
1� i�nS denote an equilateral subgraph that has a side
length of l= ��d c�ln n�1+�� in each dimension. The number s of
vertices contained in one �full� subgraph is bounded by

c�ln n�1+� � s = ��d c�ln n�1+��d � 2dc�ln n�1+�. �6�

We will now partition Gd�n , p� into the subgraphs as
shown in Fig. 1. Obviously, incomplete subgraphs exist if
a / l is not integer. The leftover vertices can be placed arbi-
trarily between full subgraphs as indicated in Fig. 1�b�. For
simplicity we will consider instead of Gd�n� a smaller hyper-
cube Gd�n*� containing all full subgraphs. Note that now a*

with �dn*=a*�a is the maximal integer smaller than a that is
a multiple of l. Let q=a* / l denote the number of subgraphs
in one dimension.

The relative fraction of vertices not contained in full sub-
graphs is approaching 0 for n→�,

n − n*

n
�

�l�q + 1��d − �lq�d

�lq�d �7�

=�q + 1

q
	d

− 1. �8�

Since q→� for n→�, the relative fraction of ignored
vertices is asymptotically 0. Note that

nS =
n*

s
�

n

2dc�ln n�1+� → � .

Thus for n→� we may safely use

n � n* � n/2. �9�

In Gd�n* , p� there are s2 possible random edges between any
vertex from subgraph Si and any vertex from subgraph Sj.
Each of these edges exists independently with probability p.
It follows that for GS the probability pS is exactly s2

cn .
We will now prove that Theorem 1 can be applied to

GS�n�. A basic observation is that for n→�, also nS→�.

Additionally, we must show that
pSnS

ln nS
→� and

ln nS

ln�nSpS� →� for

nS→�.
Regarding, that for all nS�1, n*�n /2 �Eq. �9�� the fol-

lowing two equations hold:

pSnS

ln nS
=

s2

cn

n*

s

1

ln
n*

s

�10�

�
s

2c�ln n* − ln s�
�11�

�
�ln n�1+�

2 ln n − 2 ln s
�12�

such that pSnS / ln nS→� for n→� and

ln nS

ln�pSnS�
=

ln
n*

s

ln
sn*

cn

�13�

�
ln n/2 − ln�2dc�ln n�1+��

ln�2d�ln n�1+��
�14�

such that also
ln nS

ln�pSnS� →�. By Theorem 1 we know that thus

GS has a diameter asymptotical to
ln nS

ln�pSnS� . Regarding that

n* /n�1/2 this is bounded by

D�GS� =
ln nS

ln�pSnS�
�15�

�
ln n

ln
s

2c

�16�

�
ln n

�1 + ��ln ln n − ln 2
�17�

�
ln n

ln ln n
, �18�

where the last inequality is valid for all n with
� ln ln n� ln 2.

We will now expand GS�n� in order to get an upper bound
for the diameter of Gd�n , p�.

Let v and w be two vertices in the original graph Gd�n , p�.
First, we will reduce Gd�n , p� to Gd�n* , p� in such a way that
v and w are contained in Gd�n* , p�. Then we know that there
is a path from subgraph Si containing v to subgraph Sj con-
taining w with a length of no more than D�GS�. This path is
denoted by �e1 ,e2 , . . . ,ek�, the sequence of edges to traverse
to walk from Si to Sj.

To use this path in the original graph Gd�n , p�, we
will first have to walk from vertex v to that vertex v� from
Si that is attached to e1. This will at most take
D�Si�=d���d c�ln n�1+��−1� steps. For every entered subgraph
Sx on the way to subgraph Sj, an additional distance of D�Sx�
has at most to be added to get from the random edge entering
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the subgraph to the edge leaving this subgraph. Thus, the
distance of v ,w in the original graph Gd�n , p� is asympoti-
cally given by at most

D�Si�„D�GS� + 1… � d���d c�ln n�1+�� − 1�

�� ln n

�1 + ��ln ln n − ln 2
+ 1	

With this, Lemma 1 is proven.
In the following we want to discuss what happens if the

degree of the underlying grid graph is enlarged.
As stated in Lemma 1, the diameter of a Gd�n , p� graph is

asymptotically at most D�Si�(D�GS�+1). Let Gd�n ,k , p� de-
note an extended regular grid, in which every vertex is con-
nected to its k next neighbors, combined with an additional
G�n , p� graph. The diameter D�Si� depends on the degree of
the vertices in the underlying grid graph. Thus, if we want to
reduce the diameter of the Gd�n ,k , p� graph we just have to
add some more edges to the grid. For example, D�Si� is
reduced to 1 if for p=1/cn we add edges from every vertes
to its c�ln n�1+� next neighbors. The combined graph
Gd(n , �ln n�1+� , p) has now a diameter of at most D�GS�.

C. Generalizing the family of hybrid graphs with small-world
effect

In this section we will generalize Lemma 1 in two ways.
�1� The probability p of the added random graph G�n , p�

can be as small as 1
f�n�n as long as �ln n�1+��/2�� f�n��n1−�

for some constants � ,��0 and n→�.
�2� The basic regular d-dimensional grid can be replaced

by certain graph families. This was already indicated at the
end of Sec. III B.

These two extensions lead finally to our generalized theo-
rem on the diameter of hybrid graphs with a small-world
effect.

1. Generalizing the random graph component

At first, we explain in which range p can be chosen, such
that the proof technique can still be applied. In Sec. III B, we
kept p=1/cn. For smaller p= 1

f�n�n , the size s of the sub-

graphs must be chosen larger such that Theorem 1 can be
applied. Let again nS denote the number of vertices and ps
denote the probability of an edge in GS.

For simplicity we assume that nS=n /s�N and
psn= �ln n�1+��N. The general case follows the argumenta-
tion above.

The number of nodes in each subgraph will be chosen

such that s=
�ln n�1+e

pn = f�n��ln n�1+� Again, Lemma 1 requires
the validity of

pSnS

ln nS
→ � �19�

and

ln nS

ln�nSpS�
→ � . �20�

As before pS=s2p. We first analyze the condition given in
Eq. �19�,

pSnS

ln nS
= s2p

n

s

1

ln nS
�21�

�sp
n

ln n
�22�

=�ln n�� �23�

which approaches infinity for increasing n. The second con-
dition �20� simplifies to

ln nS

ln�nSpS�
=

ln�n

s
	

ln�n

s
s2p	 �24�

=

ln
 n

f�n�
�ln n�1+��

ln�ln n�1+� �25�

=

ln� n

f�n�
	

ln�ln n�1+� − 1 �26�

which tends to infinity for f�n��n1−�, ��0. Therefore both
conditions are met and Theorem 1 can be applied to GS. If
f�n� is chosen to be lower than �ln n�1+��� then the random
graph component will be connected and Theorem 1 can be
directly applied. Such, f�n� is also restricted from below to
be larger than �ln n�1+���.

We summarize this result in the following.
Lemma 2: For any function �ln n�1+��/2�� f�n��n1−� ,� ,

��0 and p=1/ f�n�n, we can partition the grid graph
within a Gd�n , p� graph into nS=n /s subgraphs Si of size
s= f�n��ln n�1+� such that Gd�n , p� shows a diameter of as-
ymptotically at most [Eq. (26)]

�27�

Now we will discuss the second possible generalization.

2. Possible replacements of the regular grid graph

In the general proof pattern shown above, the following
two properties of regular grid graphs are needed: First, regu-
lar grid graphs are partitionable for every n into 	(n /s�n�)
subgraphs of size s�n� for any function s�n��n such that
each of these subgraphs is a connected graph. The second
property used is that for any pair of vertices v ,w there must
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be at least one partition such that v and w are contained in
any of the subgraphs.

To abstract from this special graph family to all graph
families with these two properties we introduce the follow-
ing definition.

Definition 2: Let GL�n� be a graph family with the follow-
ing two properties:

�1� GL�n� is partitionable for every n into 	(n /s�n�) sub-
graphs of size s�n� for any function s�n��n such that each of
these subgraphs is a connected graph.

�2� For any pair of vertices v ,w and every n there must
be at least one partition as described such that v and w are
contained in proper subgraphs.

GL�n� is called a regularly partitionable graph family.
For graph families with a stochastic generating process, it is
enough to show that such a partition is existing whp.

Note that every graph family GL�n� is restricted regularly
decomposable for at least s�n�=1. Let smax�n� be that func-
tion s��n� that has the fastest growth of all functions s�n� for
which GL�n� is restricted regularly decomposable. If now
smax�n�=k ,k�N for GL�n� and GL�n� replaces the regular
grid then it is clear that the size of the subgraphs is also at
most k to obey 	�n /s�. This implies that p of the added
random graph must be at least O��ln n�1+� /n� in order to
achieve a supergraph that obeys Theorem 1. It follows that
the diameter is reduced to the diameter of a random graph
because we add a random graph with the wanted diameter. In
this case the definition of the small-world effect would ex-
clude this kind of combination.

We conclude this section with a theorem on the diameter
of generalized small-world models combining a locally clus-
tered graph family with a thin random graph.

Theorem 2: Let GL�n , p� denote the combination of in-
stances of a regularly decomposable graph family GL�n� and
a G�n , p� graph where

p =
1

f�n�n
,

1

�ln n�1+��/2� � f�n� �
1

n1−� , � � 0, � � 0.

D(s�n , p�) denotes the maximal diameter of any subgraph of
GL�n , p� with size s�n , p�= �ln n�1+� / pn, ��0, the diameter
of GL�n , p� is asymptotically at most

�28�

IV. PROVING REGULAR DECOMPOSABILITY

We now want to discuss the connection between regularly
decomposable graph families and locally clustered graph
families. As indicated before, the classic small-world models
are based on locally clustered graph families but our proof
pattern is based on the notion of regularly decomposable
graph families. It is easy to see in the special cases of chordal
rings and d-dimensional lattices that these are at the same
time locally clustered and regularly decomposable.

We will now show under which conditions general locally
clustered graph families are also regularly decomposable.

The main idea of the proof is to use the embedding of the
vertices in a space and to divide this space into areas that
contain connected subgraphs with at least a given number of
vertices. Thus, the partition of space induces a partition of
the graph. The task that must be tailored for every specific
graph family, is showing that there is always a partition of
space that yields 	(n /s�n�) connected subgraphs with at
least the wanted number s�n� of vertices. Graph families that
are locally clustered and show this property are also regu-
larly decomposable. Note that this is not a necessary prop-
erty of locally clustered graph families. It is possible to con-
struct artificial locally clustered graph families that lack this
property, e.g., a graph family G5�n� which consists of uncon-
nected 5-cliques C1 ,C2 , . . . ,C�n/5� where all members of
clique Ci are located at position i in a one-dimensional space.
This family is clearly locally clustered for the partition
�C1 ,C2 , . . . ,C�n/5�
 but it is not regularly decomposable be-
cause it is not possible to partition the graph into subgraphs
with a size s�n��5.

In the following we will analyze the regular decompos-
ability of a more sophisticated locally clustered graph family,
namely that of k-next neighborhood graphs �knn graphs�:
Given a set of vertices distributed in any d-dimensional
space, let E be the set of directed edges such that every
vertex v is connected to its k-next neighbors. If the set of
k-next neighbors is ambiguous for any vertex, then choose
any of the possible sets uniformly at random. Note that the
edge relation is not symmetric and therefore the knn graph is
a directed graph and thus we differentiate between the out-
going and ingoing edges of a vertex. This kind of graph
family certainly matches the common intuition about a local
graph family and It is also locally clustered for any nontrivial
partitioning of the space. We will now prove the following
theorem.

Theorem 3: The k-next neighborhood graph family is
regularly decomposable if the vertices of a given instance
are distributed uniformly at random in a two-dimensional
unit-square.

In order to prove the given property we will proceed in
the following steps:

�1� Bound the expected distance to next neighbors from
above.

�2� Prove that a knn graph is connected with high prob-
ability for k� ln n.

�3� Show that a generic partition procedure yields
the required 	(n /s�n�) subgraphs for a given size function
s�n��n.

A. A bound for the maximum distance of nearest neighbors

Let the knn disk of any vertex v be defined as the minimal
disk which contains all of its k-next neighbors. Note that the
disc’s radius is equal to the maximum distance of any con-
nected nearest neighbor to v.

The probability for any vertex v to be placed in some area
of size A�1 within the unit square is exactly A. Thus, the
placement of vertices into a given area is a Bernoulli trial
with p=A and q=1−A. The radius of a disk with expectedly
k=nA vertices is thus clearly given by r̄=�k /
n. Now, the
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Chernoff bound may be applied to yield an upper bound for
the diameter of any disk within the unit square that contains
at least k vertices.

Lemma 3: Let r̂=�ĉr̄ denote a knn-disk radius with
ĉ=3+�8. Further let k� ln n. With high probability, no disk
with radius r̂ around any vertex v exists that does not contain
at least k vertices.

Proof 1: Let Dv denote a knn disk around v with an ex-

pected number of vertices lying in that disk equal to k̄=ck.
Xk denotes the number of vertices lying inside of Dv. Now we
apply a relaxed version of the Chernoff inequality for inde-
pendent Bernoulli trials. With �=ck and �=1− 1

c ,

Pr�Xk � �1 − ���� � e−�1/2���2

= e−�ck/2��1 − �1/c��2
� n−�c/2��1 − �1/c��2

. �29�

The latter inequation is only valid for k� ln n. For
c= ĉ=3+�8 we yield

Pr�Xk � �1 − ���� �
1

n2 . �30�

Hence, the probability that there is a knn disk with radius
larger than r̂=�3+�8r̄ in a knn graph with k� ln n is �1/n.

The interpretation of this result is that it is almost impos-
sible for n→� that any knn disk exists with a radius larger
than r̂. Therefore in our following theorems, we consider the
radius of knn discs to be bound by r̂=�ĉr̄.

Note that these equations are only valid for disks that do
not intersect with the unit squares border. If a vertex vc is
positioned in a corner of the unit square, a factor of 2 must
be applied to r̂ to yield the correct upper bound on the radius
of its knn disk.

B. Connectedness of knn graphs

We will now show that a knn graph is connected whp.
The proof for the following lemma will be ommited. Here

we will just sketch it shortly: As can be seen in Fig. 2, in
every unconnected knn graph there is one pair of closest
vertices lying in different components. It can easily be shown
that there must be a an angle of at least 120° in which none
of either’s k-next neighbors is placed. A simple stochastic
argument shows that the probability for the existence of any
vertex with this property is given by �2/3�k. Equating this
with the probability bound of 1/n and solving the equation
yields the needed k such that with high probability not even
one vertex with the above mentioned property exists. This
leads to the following lemma.

Lemma 4: A knn graph is connected with high probability
for k� ln n / ln�3/2�

Note that the probability for an unconnected knn graph is
smaller than 1/n since the existence of at least one vertex
with the above given property is only necessary for an un-
connected graph but certainly not sufficient.

We will now show that connected commensurate parti-
tions can be found.

C. Constructing the partition

The following procedure constructs partitions as required
by the definition for regularly decomposable graph families.
The needed size s of the subgraphs is depending on the prob-
ability p= 1

f�n�n of the added random graph G�n , p�,

s�n� = f�n�ln n1+�. �31�

The partitioning algorithm must be capable of finding for
each pair of vertices a partition into 	�n /s� subgraphs such
that both vertices are included in some full subgraph of size
s. To guarantee this, we construct slightly different partitions
for each pair v ,w of vertices. For each of them, we start with
a geometric partition, based on squares containing at least
4 /
s vertices. The exact positions for the squares are chosen
such that both vertices are contained in full subgraphs. Be-
side this requirement the positions of the squares are arbi-
trary as long as the number of squares placed completely
inside the unit square is maximal. Note, that a constant rela-
tive fraction of vertices may exist, that is not contained in
any subgraph. Each of the squares covers an area As so that
with high probability at least 4 /
s vertices are geometrically
contained in each of them. The area is given by As�

4


r̂2,

where r̂ denotes the maximal expected knn-disc radius
�Lemma 3�.

The maximal �centered� circle �Fig. 3� within each
As contains only vertices from the same connected compo-
nent. Otherwise at least one vertex would have an arc
of more than 120° without any knn edge which is highly
unlikely as was already shown in Lemma 4. The area of this
circle covers 
 /4 of As. We expect therefore that at least
�
 /4��4/
�s=s vertices from the same connected compo-

FIG. 2. v and w are two vertices from different connected com-
ponents of a knn graph having minimal euclidian distance to each
other. Two circles are drawn around v and w, respectively, with a
radius that equals the euclidian distance between v and w. The
figure shows that none of the k-next neighbors of neither v nor w
can exist in the intersection of these circles without contradicting
the condition that v and w are the pair of vertices from different
connected components with minimal euclidian distance.
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nent for each As. As we explained before, for each con-
structed partition a constant fraction of vertices can be
disregarded.

Figure 3 shows an example for a partition for s=2.
Note that the expected diameter D�Si� of the subgraphs is

expectedly scaling with O��ds� as it is the case with grid
graphs.

With this we have shown that a locally clustered graph
family is also regularly decomposable if it is possible to
divide the space in which it is located into 	(n /s�n�) areas
that contain connected subgraphs of a wanted size s�n�.

V. DISCUSSION

In this paper we have proposed a general framework for
the design of hybrid graph families with a small-world ef-
fect: We have shown that certain combinations of a regularly
decomposable graph family and a random graph component
G�n , p� belong to that family. Furthermore, we have given a
generalized theorem that describes an upper bound for the
diameter of these hybrid graphs in dependence of the struc-
ture of both, the regularly decomposable and the random
graph component. We just want to note here, that the family
of graphs with a small-world effect is not restricted to the
hybrid graphs analyzed in depth here, but also includes all
the classical small-world models �2,9,11–13�.

The last years have seen new variants of small-world
models that try to capture different network properties in
addition to the sheer smallness of the network, e.g., the navi-
gability approach of Kleinberg �11,12�, or the hybrid power
law graphs of Chung and Lu �13�. To find models for real-

world networks that show different additional properties
seems to be an important task for the next years. This frame-
work provides high flexibility in tuning a model to simulate
a given real-world complex system because every wanted
graph property, as for example, a scale-free degree distribu-
tion �22�, a certain assortativity �23�, or a wanted clustering
coefficient, can now be put into the nonrandom graph com-
ponent and will thus also appear in the hybrid graph. As long
as these wanted properties do not hinder the regular decom-
posability of the graph family, the small-world effect will be
maintained and, simultaneously, the wanted graph property
will also show up in the hybrid graph since the random graph
component is so sparse that it will not affect most properties,
i.e., degree distributions, clustering coefficient, or assortativ-
ity, the one exception being—of course—the diameter and
related distance measures.

Watts and Strogatz have provided us with the first formal
model for generating small-world networks. The beauty of
their model lies in its simplicity and clarity. In their model,
the high clustering coefficient gives an indication whether
there is a local graph component or not. Our main focus in
this paper lies on describing a large family of hybrid graphs
as a new way to modelling an interesting real-world network,
the focus is not so much on whether a given network shows
the small-world effect. Whether a network shows the small-
world effect or not should—in our opinion—be decided by
looking at the generating process and not so much by look-
ing at the result of it, i.e., the network: If the network gen-
erating process prefers building local edges and sometimes
generates only few random long-distance edges, the resulting
network will show the small-world effect. In the case of all
social networks, including coauthorship networks, citation
networks, or acquaintanceship networks, it is intuitive that
most of the relationships are dominated by the environment
and will thus be local, implying a large diameter of this
component. Additionally, almost every person has these
long-distance relationships to persons met somewhere, in an
almost random fashion. This part of the network is certainly
sparse with respect to the total number of possible relation-
ships and should thus also show a high diameter. In sum-
mary, the generating process of social networks of all kinds
can be meaningfully modelled by two different graph com-
ponents, a local and a random part, and thus we would argue
that social networks show the small-world effect. In sum-
mary, the small-world effect directs the focus towards net-
work generating processes and thus to families of graphs that
are generated by the same process.

Of course, our definition of the small-world effect
is somewhat influenced by our personal impression of
what small-worlds really are. Since we are aware of that
problem we want to conclude our discussion with the intro-
ductory quotation of Wiener and Rosenblueth in “The Role
of Models in Science:” “[¯] the best material model for a
cat is another, or preferably the same cat”—�Wiener and
Rosenblueth �24��.

FIG. 3. This figure shows the result of the partitioning procedure
for s=2 as described in Sec. IV C. Each square contains more than
4/
s�2.5 vertices. Each circle within any quadratic region con-
tains at least s=2 vertices that must form a connected subgraph.
Note that the distribution of points is only schematic.
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